Targeting tumor-initiating cells: Eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction
نویسندگان
چکیده
We have used an unbiased proteomic profiling strategy to identify new potential therapeutic targets in tumor-initiating cells (TICs), a.k.a., cancer stem cells (CSCs). Towards this end, the proteomes of mammospheres from two breast cancer cell lines were directly compared to attached monolayer cells. This allowed us to identify proteins that were highly over-expressed in CSCs and/or progenitor cells. We focused on ribosomal proteins and protein folding chaperones, since they were markedly over-expressed in mammospheres. Overall, we identified >80 molecules specifically associated with protein synthesis that were commonly upregulated in mammospheres. Most of these proteins were also transcriptionally upregulated in human breast cancer cells in vivo, providing evidence for their potential clinical relevance. As such, increased mRNA translation could provide a novel mechanism for enhancing the proliferative clonal expansion of TICs. The proteomic findings were functionally validated using known inhibitors of protein synthesis, via three independent approaches. For example, puromycin (which mimics the structure of tRNAs and competitively inhibits protein synthesis) preferentially targeted CSCs in both mammospheres and monolayer cultures, and was ~10-fold more potent for eradicating TICs, than "bulk" cancer cells. In addition, rapamycin, which inhibits mTOR and hence protein synthesis, was very effective at reducing mammosphere formation, at nanomolar concentrations. Finally, mammosphere formation was also markedly inhibited by methionine restriction, which mimics the positive effects of caloric restriction in cultured cells. Remarkably, mammosphere formation was >18-fold more sensitive to methionine restriction and replacement, as directly compared to monolayer cell proliferation. Methionine is absolutely required for protein synthesis, since every protein sequence starts with a methionine residue. Thus, the proliferation and survival of CSCs is very sensitive to the inhibition of protein synthesis, using multiple independent approaches. Our findings have important clinical implications, since they may also explain the positive therapeutic effects of PI3-kinase inhibitors and AKT inhibitors, as they ultimately converge on mTOR signaling and would block protein synthesis. We conclude that inhibition of mRNA translation by pharmacological or protein/methionine restriction may be effective strategies for eliminating TICs. Our data also indicate a novel mechanism by which caloric/protein restriction may reduce tumor growth, by targeting protein synthesis in anabolic tumor-initiating cancer cells.
منابع مشابه
Cancer stem cells: therapeutic targets
Cancer stem cells (CSCs) have been identified as rare cellular populations in many cancers, including leukemia and solid tumors. This minor subpopulation of cancerous cells is immortal tumor-initiating cells which thought to be responsible for cancer initiation, progression, metastasis, recurrence and drug/radiation resistance. Low proliferative rate, high self-renewing capacity, differentiatio...
متن کاملActivation-Induced Apoptosis in T cells: Effect of Age and Caloric Restriction
We have previously shown that the proliferative response of T cells to antigenic or mitogenic stimulus decreased with age and that caloric resection (CR) attenuated the age-related decline in proliferation and IL-2 expression. Because activation-induced apoptosis is known to regulate cell proliferation and eliminate the high number of activated cells during an immune response, it was of interes...
متن کاملRadiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles
Introduction: A main choice for cancer treatment is radiotherapy. But, the radiotherapy disadvantage is damages caused by radiation given to normal tissues/organs surrounding cancer. One way to avoid this is via increasing radiosensitization of cancer cells. Gold nanoparticles (GNPs) have shown sensitizing effect on cancer cells by enhancing their absorbed dose. Unlike earlier ...
متن کاملThe Effect of Plant-derived Compounds in Targeting Cancer Stem Cells
Background Cancer stem cells (CSCs) are a small subpopulation of cancer cells with self-renewal and differentiation ability. Furthermore, CSCs are resistant to chemoradiotherapy due to their high level of detoxifying enzymes, strong DNA repair abilities, and high drug efflux capacity. Objective Therefore, CSCs are supposed to account for cancer initiation, progression, metastasis, recurrence, ...
متن کاملThe Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کامل